ATU2001 PROGRAM

wersja 2.6

PROGRAM DO OBSŁUGI OŚMIOKANAŁOWEGO MODUŁU TERMOANEMOMETRU STAŁOTEMPERATUROWEGO I TERMOMETRU STAŁOPRĄDOWEGO

Instrukcja obsługi programu

OPRACOWALI: MGR INŻ. PAWEŁ JAMRÓZ DR INŻ. KATARZYNA SOCHA

INSTYTUT MECHANIKI GÓROTWORU PAN ul. REYMONTA 27, 30-059 KRAKÓW tel.: (12) 637 62 00, fax: (12) 637 28 84 <u>jamroz@img-pan.krakow.pl</u> <u>socha@img-pan.krakow.pl</u>

KRAKÓW 2010

Spis Treści

1.	Wstęp	3
2.	Moduł pomiarowy NI-USB 6009	3
3.	Instalacja	4
3	.1 Wymagania systemowe	4
3	.2 Instalacja karty pomiarowej	4
3	.3 Instalacja oprogramowania	4
4.	Obsługa programu	5
4	.1 Wybór sondy	5
4	.2 Ustawienia parametrów pomiarowych Panel pomiarowy	6
	4.2.1 Panel Wybrane sondy	6
	4.2.2 Panel Konfiguracja pomiaru	7
	4.2.3 Panel Opcje pomiaru	8
	4.2.4 Panel Kompensacja temperaturowa	8
	4.2.5 Panel Wykres prędkości / Wykres napięć	9
4	.3 Ustawienia karty pomiarowej	9
5.	Pomiar i zapis danych	10
5	.1 Pomiar	10
5	.2 Zapis	10
	5.2.1 Format zapisu przy opcji pomiaru "Napięcia"	10
	5.2.2 Format zapisu przy opcji pomiaru "Prędkości"	10
6. pos	Sposób wyznaczania prędkości na podstawie rejestrowanych napięć czujników zczególnych typów - Wzorcowanie	11
6	.1 Sondy jednowłóknowe	12
6	.2 Sondy dwuwłóknowe (X)	13
6	.3 Sondy trójwłóknowe	14
7.	Pomoc techniczna	15

1. Wstęp

Termoanemometryczny system pomiarowy jest programem służącym do akwizycji oraz wizualizacji danych pomiarowych z termoanemometru ATU2001 współpracującego z wielofunkcyjnym modułem akwizycji danych firmy National Instruments NI-USB 6009. Całość systemu wraz z oprogramowaniem została zaprojektowana i wykonana w Pracowni Metrologii Przepływów Instytutu Mechaniki Górotworu Polskiej Akademii Nauk.

2. Moduł pomiarowy NI-USB 6009

Współpraca modułu pomiarowego z systemem termoanemometrycznym dokonywana jest za pomocą 4 wejść analogowych w konfiguracji różnicowej. Taka konfiguracja karty umożliwia optymalne wykorzystanie parametrów pomiarowych. Poniżej zamieszczono opis głównych parametrów modułu wykorzystywanych podczas pomiarów.

Rysunek 1. Wielofunkcyjna karta pomiarowa NI-USB 6009

Charakterystyka wejść analogowych modułu NI-USB 6009

Przetwornik	SAR	
Wejścia analogowe	4 (konfiguracja wejść ró	óżnicowa)
Rozdzielczość	14 bitów (konfiguracja	wejść różnicowa)
Maksymalna częstotliwość próbk	owania:	-
	Pojedynczy kanał	48 kHz
	Wiele kanałów	42 kHz
FIFO	512B	
Zakres wejściowy	±20 V, ±10 V, ±5 V, ±	4 V, ±2.5 V,±2 V,
-	± 1.25 V, ± 1 V (konfig)	uracja wejść różnicowa)

Więcej szczegółów na temat modułu pomiarowego NI-USB 6009 można znaleźć na stronie <u>www.ni.com</u> oraz w załączonym pliku 6009.pdf (Płyta CD).

3. Instalacja

3.1 Wymagania systemowe

Minimalne:

Procesor: *Pentium 200 MHz lub równorzędny* RAM: *64 MB* Rozdzielczość: *800 x 600* System operacyjny: *Windows 2000/XP* **Rekomendowane:** Procesor: *Pentium III/Celeron 600 MHz lub równorzędny* RAM: *256 MB* Rozdzielczość: 1024 x 768 System operacyjny: Windows 2000/XP

Instalacja sprzętu oraz oprogramowania odbywa się dwuetapowo.

3.2 Instalacja karty pomiarowej

W pierwszym etapie należy zainstalować sterowniki modułu pomiarowego NI-USB 6009. W tym celu z dołączonej pły CD uruchomić procedurę instalacyjną poprzez znalezienie katalogu NiDAQ8_8 i uruchomienie z pliku setup.exe. Po uruchomieniu programu instalacyjnego należy postępować zgodnie ze wskazówkami instalatora.

Po poprawnym zainstalowaniu sterowników należy podłączyć kartę pomiarową poprzez dołączony kabel USB. Karta zostanie automatycznie zainstalowana w systemie oraz zostanie przypisane jej oznaczenie *DevX*, gdzie X oznacza numer kolejnej instalowanej karty firmy National Instruments. W przypadku, gdy wcześniej nie instalowano żadnych kart pomiarowych, karcie zostanie przypisane oznaczenie *Dev1*. Oznaczenie karty można sprawdzić w oprogramowaniu do obsługi karty pomiarowej *Measurement & Automation Explorer* instalującym się wraz z sterownikami *NI-DAQmx*. W tym celu po uruchomieniu *Measurement & Automation Explorer* należy wejść w obszar *Configuration*, a następnie zaznaczyć odpowiednie drzewo folderów *My System/Devices and Interfaces/NI-DAQmxDevices*. Gdy karta została poprawnie zainstalowana i podłączona powinna być ona widoczna i podświetlona na zielono. Przy nazwie karty widnieje jej oznaczenie w systemie w formacie *DevX*.

3.3 Instalacja oprogramowania

W celu zainstalowania oprogramowania ATU2001 należy z dołączonej płyty CD z katalogu ATU2001 wybrać plik ATUsetup2_6.exe. Następnie postępować zgodnie ze wskazówkami instalatora.

4. Obsługa programu

4.1 Wybór sondy

W pierwszym kroku po uruchomieniu programu należy dokonać wyboru rodzaju sondy oraz sposobu podłączenia jej do termoanemometru. W tym celu na panelu o nazwie *ATU2001 – panel konfiguracji czujników* (Rysunek 2) należy wybrać typ sond, które będą wykorzystane w trakcie pomiaru.

<mark>₹ ATU</mark>	2001 - panel konfiguracji czujników					
	I⊂ CZUJNIKI DWUWŁÓKNOWE					
	KANAŁ 1/2 SONDA 1					
	KANAŁ 3/4 SONDA 3					
	<u>D</u> alej >>> Zakończ					

Rysunek 2. Panel wyboru sond

Po dokonaniu wyboru typu sond pomiarowych należy przystąpić do konfiguracji podłączeń czujników, tj. przypisania odpowiednim kanałom określonych sond pomiarowych zgodnie z dokonanym podłączeniem w systemie. Jednorazowo w systemie mogą pracować dwie sondy jednowłókowe (Kanał1 A/B) oraz trzy sondy dwuwłóknowe (kanały 2 A/B, 3A/B, 4 A/B). Obsadki dla sond jednowłóknowych mają numery 1 oraz 5. Obsadki dla sond dwuwłóknowych mają numery zgodne z numerami kanałów do nich przypisanych tj. 2, 3, 4.

Przejście do *Panelu pomiarowego* dokonuje się po przyciśnięciu przycisku *Dalej*. W trakcie przejścia wczytywane są również parametry sond pomiarowych wyznaczone w drodze wzorcowania (Punkt 6).

Uwaga! W celu przejścia do formy ustawień parametrów pomiarowych należy podłączyć odpowiednia sondę w wybranym kanale, a następnie zgodnie z powyższą instrukcją zadeklarować dokonany wybór w programie

4.2 Ustawienia parametrów pomiarowych Panel pomiarowy

Rysunek 3. Widok panelu pomiarowego

4.2.1 Panel Wybrane sondy

ondy 2 w
KANAŁ 1 KANAŁ 2
KANAŁ 3 KANAŁ 4

Rysunek 4. Panel Wybrane sondy

Rysunek 4 przedstawia panel informujący o wybranych sondach oraz ich podłączeniu do poszczególnych kanałów systemu termoanemometrycznego. Pierwsza kolumna z nazwami sond wskazuje na numer wybranej sondy. Druga kolumna informuje o sposobie podłączenia do poszczególnych kanałów pomiarowych. Kolory poszczególnych kanałów odpowiadają kolorom serii napięć bądź prędkości kreślonych na wykresie.

Wybór sond dwuwłóknowych wraz z opcją wyboru pomiaru prędkości skutkuje dodaniem dodatkowego wykresu obrazującego przebieg wartości prędkości dla poszczególnych włókien sond oraz modułu wektora prędkości wybranej sondy.

4.2.2 Panel Konfiguracja pomiaru

W panelu *Konfiguracja pomiaru* można dokonywać wyboru pomiędzy pomiarem określonej liczby próbek, a pomiarem ciągłym.

Pomiar N próbek bufor max 32k

- Konfiguracia pomiaru							
Kuniigulacja pullialu							
Pomiar N próbek bufor	may 32k 💌						
Liczba próbek / kanał	1000						
	Less.						
Częstotliwość próbkowania	1000 Hz						
	·						

Rysunek 5. Panel "Konfiguracja pomiaru / Pomiar N próbek bufor max 32k

Opcja *Pomiar N próbek bufor max 32k* pozwala na pomiar określonej liczby próbek z wybraną częstotliwością. Z uwagi na ograniczoną wielkość bufora karty pomiarowej należy pamiętać, iż całkowita liczba próbek zbierana w jednym cyklu pomiarowym nie może przekraczać 32000. Na całkowitą liczbę próbek składa się liczba próbek na kanał pomnożona przez liczbę wybranych kanałów użytych w pomiarze.

Pomiar ciągły

Pomiar ciągły	2	
Częstotliwość próbkowania	10	Hz
Uśrednii z czasu	1	• s

Rysunek 6. Panel Konfiguracji pomiaru / Pomiar ciągły

Opcja pomiaru ciągłego przeznaczona jest do obserwacji analizowanych przebiegów. Wartość wyświetlanej próbki sygnału uśredniana jest z wybranego czasu.

Np. Jeżeli wybrano częstotliwość próbkowania 10000 Hz i czas uśredniania 2s. To otrzymana wartość próbki będzie średnią wartością 20000 próbek zebranych w czasie dwóch sekund.

Uwaga! Zgodnie z parametrami modułu pomiarowego NI–USB 6009 w programie wprowadzono ograniczenia co do wyboru częstotliwości próbkowania oraz liczby wybranych próbek wyznaczanej jako iloczyn czasu uśredniania, częstotliwości próbkowania oraz liczby kanałów użytych w pomiarze.

Konfiguracja pomiaru					
Pomiar N. próbek					
Liczba próbek / kanał	1000				
Częstotliwość próbkowania	1000	Hz			
Rysowanie próbek co	1	S			

Rysunek 7 Panel Konfiguracji pomiaru / Pomiar N próbek

Opcja *Pomiar N próbek* pozwala na pomiar określonej liczby próbek bez limitu buforu karty. Na wykresie zaznaczane są kolejne wartości próbek w jedno sekundowych odstępach czasu. Do pliku natomiast zapisywane są wartości próbek z wszystkich wybranych chwil czasowych.

4.2.3 Panel Opcje pomiaru

Opcje pomiaru					
Prędkości					
🔿 Napięcia					

Rysunek 8 Panel Opcje pomiaru

Panel umożliwiający wybór pomiędzy pomiarem napięć poszczególnych sond pomiarowych, a pomiarem prędkości badanego przepływu, wyliczonych na podstawie rejestrowanych napięć i parametrów sond otrzymanych w trakcie wzorcowania.

4.2.4 Panel Kompensacja temperaturowa

-Kompensacja temperaturowa Włącz kompensację				
Temperatura (C)	21			

Rysunek 9 Panel Kompensacja temperaturowa

Po zaznaczeniu pola *Włącz kompensację* dokonywane zostaje przeliczenie mierzonych prędkości z uwzględnieniem różnicy pomiędzy temperaturą wzorcowania czujnika, a bieżącą temperaturą pracy. Kompensacji temperaturowej można dokonywać jedynie w trybie pomiaru prędkości.

4.2.5 Panel Wykres prędkości / Wykres napięć

Rysunek 10 Panel Wykres prędkości / Wykres napięć

Panel wizualizacji mierzonych napięć/prędkości przepływu (w zależności od dokonanego wyboru panelu *Opcje pomiaru* 4.2.3). Poszczególne serie pomiarowe są wykresami wartości napięć lub prędkości (wyliczonych na podstawie zebranych napięć i parametrów sond). Kolorom serii odpowiadają kolory opisów kanałów.

Dla sond dwuwłóknowych pracujących w trybie pomiaru prędkości na wykresie dodano również serie obrazujące przebieg modułów wektora prędkości dla każdej z sond. W prawym górnym rogu wykresu podawane są wartości pomiarowe ostatnich próbek danych serii.

4.3 Ustawienia karty pomiarowej

W razie problemów z komunikacją oprogramowania z kartą pomiarową należy sprawdzić jej podłączenie i określić numer identyfikatora przypisanego dla karty w programie *Measurement & Automation Explorer* (patrz 3.2). Następnie odczytany identyfikator należy sprawdzić z ustawieniami oprogramowania ATU2001 wybierając z opcji menu głównego: *Menu/Ustawienia/Karta pomiarowa* Rysunek 11. Jeżeli występuje niezgodność należy zmienić identyfikator w oprogramowaniu ATU2001 na wskazywany przez *Measurement & Automation Explorer*.

Rysunek 11Ustawienia karty pomiarowej

5. Pomiar i zapis danych

5.1 Pomiar

Po dokonaniu odpowiedniego wyboru sond oraz parametrów pomiarowych można przystąpić do samego pomiaru. Pomiar zaczyna się w momencie wciśnięcia przycisku *Start Pomiar*.

Przy wyborze pomiaru N próbek, na dolnym pasku (status bar) otrzymujemy informacje o czasie trwania pomiaru i przewidywanym czasie zakończenia pomiaru.

5.2 Zapis

Zapis danych dokonywane jest każdorazowo w czasie trwania pomiaru. Dane umieszczane są w pliku *Temp.dat*. Po zakończeniu pomiaru można dokonać wyboru pliku do którego dane te zostaną zapisane poprzez wciśnięcie przycisku *Zapisz pomiar*, wyborze opcji *Zapisz* z menu głównego lub podręcznego. Dane zapisywane są w kolejnych kolumnach odpowiadających poszczególnym kanałom. Kolumny oddzielone są znacznikiem TAB (#9). Pierwsza kolumna zawiera informacje na temat czasu danego pomiaru.

Dla pomiaru prędkości z użyciem sond jedno i dwuwłóknowych dane pomiarowe zapisywane są w pliku *Temp.dat* (dane z obu typów sond) oraz osobno w plikach *Temp1.dat* (dane z pomiaru sondami jednowłóknowymi) oraz *Temp2.dat* (dane z pomiaru sondami dwuwłóknowymi).

5.2.1 Format zapisu przy opcji pomiaru Napięcia

Dla wybranej opcji pomiaru *Napięcia* (4.2.3), w kolejnych kolumnach zapisywane są dane napięciowe pochodzące z kolejnych kanałów pomiarowych. W nagłówku pliku umieszczono informację o kanale, z którego pochodzą dane wartości zmierzonych napięć.

5.2.2 Format zapisu przy opcji pomiaru Prędkości

Wybór opcji *Prędkości* (4.2.3) powoduje zapis w kolejnych kolumnach pliku odpowiednio napięcia, a następnie wyliczonej prędkości (prędkość wyliczana na podstawie informacji o sondzie pracującej w danym kanale). W nagłówku każdej kolumny znajduje się informacja, z którego kanału zapisywane jest napięcie, bądź prędkość. Przy wyborze sond dwuwłóknowych, dodatkowo po każdej parze kanałów zapisywana jest informacja o wartości modułu wektora prędkości pochodzącego z danej sondy.

6. Sposób wyznaczania prędkości na podstawie rejestrowanych napięć czujników poszczególnych typów - Wzorcowanie

Parametry wzorcowania dla wszystkich sond tego samego typu umieszczone są w jednym pliku. Są one wczytywane automatycznie po przypisaniu danej sondy do odpowiedniego kanału pomiarowego kanału.

Poszczególne sondy zostały wywzorcowane w odpowiednich kanałach pomiarowych systemu termoanemometrycznego ATU2001, w związku z czym zaleca się ich używanie w danych kanałach. Dane na temat sond i kanałów, w których zostały wzorcowane znajdują się w Tabeli 1.

Tabela 1	. Tabela	wzorcowań
----------	----------	-----------

Tabela wzorcowań							
Sondy jednowłóknowe		Sondy dwuwłóknowe		Sondy trójwłóknowe			
Sonda	Kanał	Sonda	Kanały	Sonda	Kanały		
-	-	Sonda 1	1,2				
-	-	Sonda 2	1,2	_	_		
-	-	Sonda 3	3,4				
-	-	Sonda 4	3,4				

Wszystkie sondy zostały wywzorcowane w tunelu aerodynamicznym. Sondy jednowłóknowe wzorcowano prostopadle do przepływu. Dla czujników dwuwłóknowych wykonano wzorcowanie przy ustawieniu równoległym i prostopadłym poszczególnych włókien względem przepływu. Sondy trójwłóknowe ustawiano w taki sposób, żeby oś każdego z włókien była równoległa do kierunku przepływu przy prostopadłym ustawieniu dwu pozostałych.

Współczynniki dla poszczególnych sond wyznaczono za pomocą dostępnej w pakiecie MATLAB funkcji *fminsearch*. Minimalizowano funkcję o następującej postaci:

$$f = \sum_{i=1}^{N} \sum_{j=1}^{M} \left(\frac{\tilde{v_{ij} - v_{ij}}}{\tilde{v_i}} \right)^2$$

gdzie:

 v_{ii} – wartość wyznaczonej składowej,

 v_{ij} – teoretyczna wartość składowej,

- $\left| \tilde{v}_{ij} \right|$ wartość zadawanej prędkości moduł teoretycznego wektora prędkości,
- N liczba pomiarów,
- M liczba składowych (w zależności od liczby włókien w sondzie).

6.1 Sondy jednowłóknowe

Pojedyncza sonda termoanemometryczna zbudowana jest z obsadki, dwóch wsporników oraz rozpiętego na nich włókna pomiarowego, prostopadłego do jej osi.

Rysunek I. 1. Sonda jednowłóknowa

Prędkość dla sondy jednowłóknowej wyznaczana jest z następującego wzoru (prawo Kinga):

$$v_{ef} = b \left(U^2 - A \right)^n,$$

gdzie:

 v_{ef} – prędkość efektywna, odpowiedzialna za efekt chłodzenia gorącego włókna,

U – napięcie zmierzone dla poszczególnych czujników,

A, *B*, *n* – współczynniki uzyskiwane podczas wzorcowania, opisujące włókno. <u>Plik z parametrami dla sond jednowłóknowych</u> - *'Sondy1w.dan'*

Rozmieszczenie parametrów w pliku:

a_i b_i n_i T_{wi}

 Tw_i – temperatura wzorcowania i – numer sondy.

6.2 Sondy dwuwłóknowe (X)

Sondy dwuwłóknowe zbudowane są z dwóch wzajemnie prostopadłych względem siebie włókien. Włókna wyznaczają układ współrzędnych.

Rysunek I. 2 Sonda dwuwłóknowa

Sondy tego typu umożliwiają pomiar dwóch składowych wektora prędkości przepływu z użyciem następujących zależności:

$$v_x^2 = b_{1x} (U_1^2 - a_{1x})^{2n_{1x}} + b_{2x} (U_2^2 - a_{2x})^{2n_{2x}},$$

$$v_y^2 = b_{1y} (U_1^2 - a_{1y})^{2n_{1y}} + b_{2y} (U_2^2 - a_{2y})^{2n_{2y}},$$

gdzie:

 $a_{1x}, a_{2x}, b_{1x}, b_{2x}, n_{1x}, n_{2x}$ – parametry wyznaczane podczas wzorcowania, $a_{1y}, a_{2y}, b_{1y}, b_{2y}, n_{1y}, n_{2y}$ U_{I}, U_{2} – napięcia zmierzone dla poszczególnych włókien czujnika.

Plik z parametrami dla sond dwuwłóknowych - 'Sondy2w.dan'

Rozmieszczenie parametrów w pliku:

 Tw_i – temperatura wzorcowania i – numer sondy.

6.3 Sondy trójwłóknowe

Sondy trójwłóknowe składają się z trzech włókien umieszczonych prostopadle względem siebie i wyznaczających krawędzie sześcianu. Podobnie jak w przypadku sondy dwuwłóknowej wektor prędkości wyznaczany jest w układzie współrzędnych związanym z włóknami sondy.

Rysunek I. 3 Sonda trójwłóknowa

Składowe wektora prędkości dla sondy trójwłóknowej wyznaczane są z następujących zależności:

$$\begin{aligned} v_x^2 &= b_{1x} (U_1^2 - a_{1x})^{2n_{1x}} + b_{2x} (U_2^2 - a_{2x})^{2n_{2x}} + b_{3x} (U_3^2 - a_{3x})^{2n_{3x}}, \\ v_y^2 &= b_{1y} (U_1^2 - a_{1y})^{2n_{1y}} + b_{2y} (U_2^2 - a_{2y})^{2n_{2y}} + b_{3y} (U_3^2 - a_{3y})^{2n_{3y}}, \\ v_z^2 &= b_{1z} (U_1^2 - a_{1z})^{2n_{1z}} + b_{2z} (U_2^2 - a_{2z})^{2n_{2z}} + b_{3z} (U_3^2 - a_{3z})^{2n_{3z}}, \end{aligned}$$

gdzie:

 $\begin{array}{ll} a_{1x}, a_{2x}, a_{3x}, b_{1x}, b_{2x}, b_{3x}, n_{1x}, n_{2x}, n_{3x} \\ a_{1y}, a_{2y}, a_{3y}, b_{1y}, b_{2y}, b_{3y}, n_{1y}, n_{2y}, n_{3y} \\ a_{1z}, a_{2z}, a_{3z}, b_{1z}, b_{2z}, b_{3z}, n_{1z}, n_{2z}, n_{3z} \\ U_1, U_2, U_3 \end{array} - parametry wyznaczane podczas wzorcowania \\ - napięcia zmierzone dla poszczególnych włókien czujnika \end{array}$

Plik z parametrami dla sond trójwłóknowych - 'Sondy3w.dan'

Rozmieszczenie parametrów w pliku:

a_{1xi}	a_{2xi}	a_{3xi}	b_{1xi}	b_{2xi}	b_{3xi}	n_{1xi}	n_{2xi}	n_{3xi}	Tw_{i}
a _{lyi}	a _{2yi}	a _{3yi}	b _{1yi}	b_{2yi}	b_{3yi}	n _{1yi}	n _{2yi}	n _{3yi}	${\tt Tw}_{\tt i}$
a_{1zi}	a_{2zi}	a_{3zi}	b_{1zi}	b_{2zi}	b_{3zi}	n_{1zi}	n_{2zi}	n_{3zi}	Tw_{i}

 Tw_i – temperatura wzorcowania i – numer sondy.

7. Pomoc techniczna

Rozwiązywanie problemów

Problem	Prawdopodobna	Co zrobić
	przyczyna	
Wskazania pomiaru	W opcji wyboru sondy	Sprawdź rodzaj i numer wybranej sondy
prędkości wskazują	został dokonany	pomiarowej i dokonaj prawidłowego
zerowe lub	nieprawidłowy wybór	wyboru w panelu wyboru sondy.
niewiarygodne	rodzaju lub numeru	
wartości pomimo	sondy pomiarowej.	
wyraźnego przepływu	Anemometr nie został	Włącz zasilanie modułu ATU2001.
medium	włączony.	
	Czujnik został	Skontaktuj się z producentem. Dane
	uszkodzony	kontaktowe na końcu instrukcji
Przy próbie pomiaru	Moduł pomiarowy nie	Sprawdź podłączenie modułu
wyskakuje komunikat	został prawidłowo	pomiarowego.
"Brak komunikacji z	podłączony.	
kartą pomiarową"	Numer identyfikacyjny	Sprawdź w pakiecie sterowników
	"Dev" modułu	(Start/Programy/National
	pomiarowego	Instruments/Measurement&Automation)
	współpracującego z	w zakładce
	systemem pomiarowym	Devices&Interfaces/NIDAQmx Devices
	jest nieprawidłowy.	numer "Dev" modułu pomiarowego, a
		następnie porównaj go z ustawieniami
		programu ATU2001
		(menu/ustawienia/karta pomiarowa).
		Jeżeli numery nie zgadzają się należy
		zmienić numer karty, tak aby
		odpowiadał numerowi karty
		zamieszczonemu w pakiecie
		sterowników.

W razie wystąpienia problemów z użytkowaniem sprzętu prosimy o kontakt:

Instytut Mechaniki Górotworu Polskiej Akademii Nauk adres: ul. Reymonta 27, 30-059 Kraków, Polska telefon: (+48)(12) 637-62-00

Osoby do kontaktu:

Oprogramowanie

Paweł Jamróz telefon: (12) 637-62-00 wew. 40 email: jamroz@img-pan.krakow.pl

Sprzęt pomiarowy

Paweł Ligęza telefon: (12) 637-62-00 wew. 25 email: <u>ligeza@img-pan.krakow.pl</u>