Prace Instytutu Mechaniki Górotworu PAN Tom 14, nr 1-4, (2012), s. 213-221 © Instytut Mechaniki Górotworu PAN

Nowy opis charakterystyk termoanemometrów stałorezystancyjnych

JAN KIEŁBASA, ANDRZEJ RACHALSKI

Instytut Mechaniki Górotworu PAN; ul. Reymonta 27, 30-059 Kraków

Streszczenie

P. Ligęza [5] zaproponował nowe równanie opisujące pracę anemometru stałorezystancyjnego w formie przyjmuje postać

$$I_{w}^{2}(v) = I_{k}^{2}(1 - \frac{1}{N}) \left[1 + \left(\frac{v}{v_{k}}\right)^{n} \right]$$
(i)

gdzie $I_w(v)$ jest prądem zasilającym włókno anemometru, $N = R_w/R_g$ jest współczynnikiem nagrzania włókna, R_w -rezystancją nagrzanego włókna, R_g -rezystancją włókna w temperaturze wzorcowania sondy, a v jest prędkością przepływającego medium. Stałe I_k^2 , v_k i n, powiązał z parametrami a, b i n równania Kinga [1]

$$I_w^2 R_w = (a + b\sqrt{v})(R_w - R_g) \tag{ii}$$

Opracowanie to podaje inny sposób wyznaczania parametrów I_k^2 , v_k i *n*, które wylicza się niezależnie od siebie. Z równania (i) po przekształceniu otrzymuje się bezwymiarową postać

$$\frac{N}{N-1}\frac{I_w^2}{I_k^2} - 1 = \left(\frac{v}{v_k}\right)^n$$
(iii)

pozwalającą na wyznaczenie parametrów równania.

Pokazano, że parametry I_k^2 , v_k są zależne od średnicy grzanych włókien, a wykładnik n = n(v) dla v z zakresu 0 do 5 m/s jest monotonicznie malejącą funkcją prędkości przepływu oraz, że zależy on także od współczynnika nagrzania N i temperatury płynącego gazu.

Słowa kluczowe: anemometr cieplny, anemometr stałorezystancyjny, prawo Kinga

1. Wstęp

Praca anemometru cieplnego pracującego w systemie anemometru stałorezystancyjnego jest opisana równaniem Kinga [1], które wiąże moc dostarczaną do grzanego włókna z prędkością napływającego medium równaniem:

$$I_{w}^{2}R_{w} = (a_{0} + b_{0}\sqrt{v})(T_{w} - T_{g})$$
⁽¹⁾

gdzie $I_w(v)$ oznacza prąd zasilania grzanego włókna, R_w rezystancję nagrzanego włókna, T_w temperaturę nagrzanego włókna a T_g temperaturę opływającego medium, a_0 i b_0 stałe, a v jest prędkością przepływającego medium.

Jeżeli anemometr z grzanym włóknem pracuje w systemie anemometru stałorezystancyjnego (tradycyjnie zwanego stałotemperaturowym co nie jest prawdą), w którym rezystancja nagrzanego włókna R_w jest utrzymywana na stałej ustawionej wartości to wykorzystując związki, że

$$R_{w} = R_{0} [1 + \gamma (T_{w} - T_{0})]$$
⁽²⁾

oraz

$$R_g = R_0 [1 + \gamma (T_g - T_0)]$$
(3)

otrzymuje się

$$T_w - T_g = \frac{R_w - R_g}{\gamma R_0} \tag{4}$$

Wstawiając (4) do (1) dostaje się

$$I_{w}^{2}R_{w} = (a_{0} + b_{0}\sqrt{\nu})(\frac{R_{w} - R_{g}}{\gamma R_{0}})$$
(5)

i dalej

$$I_w^2 = (a + b\sqrt{v})(1 - \frac{1}{N})$$
(6)

gdzie stałe
$$a, b$$
 i N są kolejno równe

$$a = \frac{a_0}{\gamma R_0} \tag{7}$$

i

$$b = \frac{b_0}{\gamma R_0} \tag{8}$$

$$N = \frac{R_w}{R_g} \tag{9}$$

przy czym γ jest temperaturowym współczynnikiem rezystancji włókna R_0 wyznaczonym w temperaturze odniesienia T_0 . Parametr N zwie się współczynnikiem nagrzania włókna.

W praktyce liczni autorzy przyjmują, że zależność (6) nie jest pierwiastkowa lecz potęgowa a wykładnik potęgowy *n* różnie autorzy podają. Wg Strickerta [2] jest zawarty w przedziale 0.4-0.6 a nawet dla bardzo małych prędkości [6-9] jest równy 2. Jest on wyznaczany w procesie wzorcowania.

W przypadku, gdy anemometr pracuje w systemie stałorezystancyjnym ($R_w = \text{const}$) równanie (6) daje się sprowadzić do bardziej ogólnej zależności

$$I_w^2(v) = (a + bv^n)(1 - \frac{1}{N})$$
(10)

Występujący tu parametr *a* jest równy kwadratowi prądu zasilania włókna w warunkach *N* przy zerowej prędkości *v*. Pewną trudność w tym równaniu sprawia interpretacja fizyczna współczynnika *b*, gdyż w zależności od wartości wykładnika *n* jego wymiar musi ulegać zmianie, a to jest trudne do zaakceptowania. Stąd pojawiają się próby nieco innego opisu, który by tych kłopotów interpretacyjnych nie powodował.

2. Propozycja opisu wg P. Ligęzy

Paweł Ligęza zaproponował nową postać równania opisującego pracę anemometru stałorezystancyjnego w formie [4-5]

$$I_{w}^{2}(v) = I_{k}^{2}(1 - \frac{1}{N}) \left[1 + \left(\frac{v}{v_{k}}\right)^{n} \right]$$
(11)

gdzie stałe I_k i v_k wiążą się ze stałymi z równania (10) następującymi zależnościami

$$I_k = \sqrt{a} \tag{12}$$

oraz

$$v_k = \left(\frac{a}{b}\right)^{\frac{1}{n}} \tag{13}$$

a *n* pozostaje to samo. Parametr I_k ma wymiar prądu i teoretycznie jest równy prądowi, gdy v = 0 i $R_w \to \infty$ czyli $\frac{1}{N} \to 0$. Tę sytuację ilustruje Rys. 1.

Rys. 1. Graficzne wyznaczenie I_k^2

W praktyce tok postępowania jest następujący: dla v = 0 i określonego N z równania (11) dostajemy

 $I_k^2 = \frac{N}{N-1}I_w^2$

a w szczególności gdy N = 2 mamy

$$I_k^2 = 2I_w^2$$

Równanie (15) pozwala w praktyce wyznaczyć I_k^2 bez obawy przepalenia włókna.

Natomiast v_k jest pewną hipotetyczną prędkością normująca, której interpretację poda się niżej. Pewną trudność stanowi fakt, że wzory (10 i 11) nie opisują dokładnie charakterystyki prądowej anemometru od prędkości przepływu ale tylko jej część dla $v \ge v_{min}$. Stąd wyjściowa interpretacja, że I_k jest prądem zasilania czujnika dla v = 0 jest błędna.

Wzór (11) możemy także zapisać w formie bezwymiarowej jako

$$\frac{N}{N-1}\frac{I_{w}^{2}}{I_{k}^{2}}-1=\left(\frac{v}{v_{k}}\right)^{n}$$
(16)

w którym zmienne są rozdzielone. Zauważmy, że dla $v = v_k$ wartość ułamka $\left(\frac{v}{v_k}\right) = 1$ niezależnie od wartości wykładnika *n* i wówczas

$$I_w^2 = 2I_k^2(\frac{N-1}{N})$$
(17)

co dla N = 2 daje

$$I_{w}^{2} = I_{k}^{2} \tag{18}$$

Równocześnie oznacza to, że jeżeli dla pewnego v spełniona jest równość (17) to $v_k = v$. Jeżeli wzorcujemy czujnik a wartość I_k jest już znana zadajemy określoną prędkość v przepływu i odczytujemy prąd I_w , jaki płynie przez czujnik przy zadanym współczynniku nagrzania N. Jeśli ten prąd I_w będzie równy wyznaczonemu z równania (17) to prędkość v_k jest równa tej zadawanej prędkości v.

(14)

(15)

3. Wyznaczenie zależności n(v)

Zależność (16) jest równaniem nieliniowym o rozdzielonych zmiennych. Lewa strona zawiera dane prądowe a prawa prędkościowe. Wprowadzając nową funkcję

$$F(v,N) = \frac{N}{N-1} \frac{I_w^2(v)}{I_k^2} - 1$$
(19)

badamy kiedy F(v, N) = 1 dla danego N. Jeśli ta równość zachodzi tzn, że

$$v_k = v \tag{20}$$

Wykorzystując (16) i (19) dostaje się

$$F(v,N) = \left(\frac{v}{v_k}\right)^n \tag{21}$$

Logarytmując obustronnie równanie (21) uzyskuje się

$$\ln[F(v,N)] = n\ln(\frac{v}{v_k}) \tag{21}$$

a stąd

$$n = \frac{\ln[F(v,N)]}{\ln\left(\frac{v}{v_k}\right)}$$
(22)

Znając z eksperymentu dane v_i i $I_w(v_i)$ znajdujemy wartości $n(v_i)$. Mając wspomniane wielkości wyznaczamy np. v gdy w danych warunkach znamy prąd zasilania czujnika I_w

$$v = v_k [F(v,N)]^{\frac{1}{n(v)}} = v_k [F(v,N)]^{m(l_w)}$$
(23)

gdzie

$$m(I_w) = \frac{1}{n(v)}$$

lub I_w gdy interesuje nas prąd zasilania czujnika przy znanej prędkości v

$$I_{w} = I_{k} \left\{ (1 - \frac{1}{N}) \left[1 + (\frac{\nu}{\nu_{k}})^{n} \right] \right\}^{0.5}$$
(24)

3. Opis eksperymentu

Do badań wykorzystano dwa czujniki termoanemometryczne wykonane z włókna wolframowego o średnicy 5 µm i długości 2 mm Czujnik wzorcowano na stanowisku firmy TSI [3] model 1129. Czujnik był umocowany w uchwycie pionowo w ten sposób, że włókno było poziome a napływ powietrza na włókno był pionowo w górę.

Czujnik był zasilany z układu elektronicznego realizującego anemometr stałorezystancyjny co oznacza, że układ elektroniczny zasilał włókno czujnika takim prądem, że zachowywało ono stałą nastawioną rezystancję niezależnie od prędkości opływającego go medium. Temperatura powietrza w pomieszczeniu była klimatyzowana i wynosiła 23°C z dokładnością do 0.5°. Rezystancja włókna "na zimno" wynosiła $R_0 = 2.49 \Omega$ Zmierzono w warunkach bezprzepływowych (v = 0) prąd zasilania sondy I_0 dla współczynnika nagrzania N=2, który był równy 63.849 mA, stąd $I_0^2 = 4080$ mA [2].

W Tabeli 1 zestawiono wyniki pomiarów prądów zasilania czujnika jakie występują dla danej prędkości przepływu powietrza przy zadanym współczynniku nagrzania *N*.

Tab. 1. Tabela 2 dla $N = 1.8$													
	N=1.6		N=1.8		N=2.0		v	l(v)	F(l(v))	v/vk	ln(F)	ln(v/vk)	n(v)
v [m/s]	I(v) [mA]	v [m/s]	l(v) [mA]	v [m/s]	l(v) [mA]		m/s	mA	[1]	[1]	[1]	[1]	[1]
0	0	0.0832	42.005	0.083	44.321		0.083	42	0.0069	0.0162	-4.9761	-4.1209	1.2075
0.2137	39.573	0.2092	43.277	0.2098	46.186		0.209	43.28	0.0688	0.0408	-2.6765	-3.1994	0.8365
0.246	39.966	0.2469	43.679	0.2463	46.654		0.247	43.68	0.0888	0.0481	-2.4215	-3.0335	0.7983
0.2876	40.372	0.2872	44.085	0.2875	47.049		0.287	44.09	0.1091	0.0560	-2.2154	-2.8822	0.7687
0.3389	40.801	0.3392	44.586	0.3391	47.598		0.339	44.59	0.1344	0.0661	-2.0066	-2.7160	0.7388
0.4036	41.416	0.4034	45.228	0.4035	48.265		0.403	45.23	0.1674	0.0787	-1.7875	-2.5426	0.7030
0.4801	42.031	0.4802	45.913	0.4807	48.944		0.480	45.91	0.2030	0.0936	-1.5947	-2.3682	0.6734
0.5722	42.711	0.5724	46.615	0.5724	49.71		0.572	46.62	0.2401	0.1116	-1.4269	-2.1927	0.6508
0.6844	43.459	0.6838	47.398	0.6839	50.498		0.684	47.40	0.2821	0.1333	-1.2656	-2.0149	0.6281
0.8196	44.242	0.8193	48.241	0.8194	51.375		0.819	48.24	0.3280	0.1598	-1.1146	-1.8340	0.6077
0.9814	45.052	0.9812	49.126	0.9814	52.294		0.981	49.13	0.3773	0.1913	-0.9748	-1.6537	0.5895
1.1741	45.899	1.1742	50.025	1.1743	53.235		1.174	50.03	0.4281	0.2290	-0.8483	-1.4741	0.5755
1.4075	46.777	1.4076	50.962	1.4077	54.205		1.408	50.96	0.4821	0.2745	-0.7295	-1.2929	0.5643
1.6887	47.676	1.6888	51.935	1.6889	55.23		1.689	51.94	0.5393	0.3293	-0.6176	-1.1107	0.5560
2.027	48.614	2.0282	52.951	2.0284	56.274		2.028	52.95	0.6001	0.3955	-0.5107	-0.9276	0.5506
2.4313	49.614	2.4326	54.011	2.4328	57.39		2.433	54.01	0.6647	0.4744	-0.4084	-0.7458	0.5476
2.9043	50.642	2.9052	55.092	2.9056	58.525		2.905	55.09	0.7321	0.5665	-0.3118	-0.5682	0.5488
3.4844	51.741	3.4857	56.28	3.4863	59.75		3.486	56.28	0.8076	0.6797	-0.2137	-0.3860	0.5535
4.1742	52.929	4.1755	57.603	4.1759	61.048		4.175	57.60	0.8935	0.8142	-0.1126	-0.2055	0.5478
5.0039	54.164	4.956	58.926	5.0058	62.43		4.956	58.93	0.9815	0.9665	-0.0186	-0.0341	0.5462

W tabeli 2 zawarto wyniki obliczeń z danych pomiarowych uzyskanych dla współczynnika N = 1.8. Na Rys. 2 przedstawiono prądy I(v) zasilania czujnika przy zmieniających się v dla trzech współczynników nagrzania N.

Rys. 2. Krzywe wzorcowania czujnika anemometrycznego W-5 µm dla trzech współczynników nagrzania

Z danych zawartych w tabeli 2 wyliczono v^n (dla n = 0.5 o czym będzie poniżej) oraz $I_w^2(v)$ a uzyskane rezultaty przedstawiono na wykresie Rys. 3. Krzywe się nieco zlinearyzowały ale jednak są dość odległe od prostych o czym najlepiej świadczą parametry prostych aproksymujących wyniki pomiarowo-obliczeniowe.

Na następnym rysunku (Rys. 4) przedstawiono zmodyfikowane krzywe, realizujące równanie

$$I_z^2(v) = a + bv^{0.5} = \frac{N}{N-1}I^2(v)$$
(26)

uzyskane bezpośrednio z równania (6). Widzimy, że krzywe Kinga zsunęły się i prawie nachodzą na siebie. Świadczy to, że równanie (26) dobrze opisuje straty cieplne od prędkości przepływu.

Rys. 3. Wyniki wzorcowania sond w układzie współrzędnych Kinga dla trzech różnych współczynników nagrzania

Rys. 4. Znormalizowane krzywe Kinga (wg równania 26)

Rys. 5. Dane dla N = 2 podzielone na trzy grupy w zależności od v

Otwartą sprawą pozostaje wyznaczenie parametrów *a* i *b* równania (26). Problem zilustruje na przykładzie krzywej z rysunku 3 dla N = 2. Krzywą podzielono na 3 części i w każdej wpisywano prostą o równaniu $I^2(v) = a + bv^{0.5}$, której parametry zmieszczone są w tabeli 3. Różnice w parametrach poszczególnych odcinków są nazbyt widoczne. To samo mamy gdy analizuje się wyniki uzyskane dla N = 1.8 czy N = 1.6. Tab. 3.

Zakres pierwiastka z prędkości	а	b	R^2
$0 < v^{0.5} < 1.0$	3372.2	2216.6	0.9988
$1.05 < v^{0.5} < 1.70$	3699.2	1939.1	0.9996
$1.72 < v^{0.5} < 2.5$	3936.9	1794.6	0.9999

Tę sytuację próbowano ratować przyjmując do opisu zmodyfikowane równanie (10) dla *n* różnego od 0.5. I tu pojawiła się nowa trudność, gdyż równanie (10) przestało być wymiarowo jednorodne. Parametr *a* ma wymiar kwadratu prądu, parametr *b* w równaniu (6) jest też jednoznaczny, gdyż $bv^{0.5}$ ma wymiar kwadratu prądu, natomiast *b* w równaniu (10) jest niedookreślone. Drugą kwestią jest jak wyznaczyć jednoznacznie *b* i *n* z danych pomiarowych. Równanie

 $c = bv^n$

gdzie v jest stałą nie ma jednoznacznego rozwiązania na b i n. Logarytmując to równanie mamy

$$\ln(c) = \ln(b) + n\ln(v)$$

Gdy $\ln(c)$ i $\ln(v)$ są stałe to ostatnie równanie ma nieskończenie wiele rozwiązań.

Po takim materiale wprowadzającym przejdzie się do równania (19)

$$F(v,N) = \frac{N}{N-1} \frac{I_w^2(v)}{I_k^2} - 1$$

które ilustruje Rys. 6. Widać, że krzywe dla różnych N niewiele różnią się od siebie.

Dla każdej z serii danych zamieszczonych w tabeli 1 czyli dla każdego N liczono F(v, N) wg zależności (19). Następnie w 5 ostatnich punktów pomiarowych wpisywano prostą i tym sposobem na przecięciu tej prostej z prostą F(v, N) = 1 wyznaczano prędkość normująca v_k . Mając v_k liczono v/v_k i dalej ln (F(v, N)) oraz ln (v/v_k) a w końcu n(v)

Rys. 6. Przebieg funkcji F(v, N) dla różnych N od prędkości przepływu. Tu dla N = 2, $I_k^2 = 4080$ mA², a $v_k = 5.346$ m/s

Z danych zawartych w tabeli 2 liczymy stosunek logarytmu F(v) do logarytmu (v/v_k) . Uzyskane punkty, pokazano na Rys.7. Dla małych prędkości rzędu 0-1.5 m/s punkty mocno opadają od wartości rzędu jeden do 0.55 a dalej osiągają poziom 0.54-0.52. Widać zatem, że powszechne przyjmowanie wartości n = 0.5 jest nieuzasadnione. Zauważa się też zależność n(N) zwłaszcza dla v < 1.5 m/s jest mocno nieliniowa. Warto też przypomnieć, że dla v = 0 funkcja opisująca straty cieplne włókna jest parabolą a więc wówczas $n = 2\otimes$.

Rys. 7. Zależność współczynnika n(v, N) od prędkości przepływu v i współczynnika N

3. Ocena niepewności wyznaczenia I_k^2 , v_k i n(v)

Niepewność pomiaru $\Delta(I_k^2) = 2I_k \Delta I_k$ wyliczamy bezpośrednio z podanego wzoru. Tu I_k dla v = 0i N = 2 wynosiło 64.10 mA a mierzono go z dokładnością $\Delta I_k = 0.001$ mA.

Zatem $\Delta(I_k^2) = 2I_k \Delta I_k = 128.20 \times 0.001 = 0.128 \text{ mA} [2], \text{ stąd } I_k^2 = 4080 \pm 0.1282 \text{ mA} [2] \text{ a niepewność względna wyznaczenia } I_k^2 \text{ wynosi } 0.00312\%.$

Niepewność pomiaru Δv_k wyznacza się z równania (16) przy założeniu że n(v) = 1. Mamy wówczas

$$v_k = \frac{v}{F(v, N)}$$

Dla F(v, N) = 1 mamy, że $v_k = v$, a stąd $\Delta v_k = \Delta v$. Bezwzględną niedokładność pomiaru v można wg tabeli 2 ocenić na 0.01 m/s. Stąd maksymalny błąd względny pomiaru prędkości będzie wynosił

$$\frac{0.01}{9.049} \times 100 = 0.11\%$$

Ocenę niepewności n przeprowadzi się w oparciu o zależność (22). Dla ustalonego N mamy więc

$$|\Delta n| = |\frac{\Delta F}{F} \ln(\frac{v}{v_k})| + |\ln[F(v)](\frac{\Delta v}{v} + \frac{\Delta v_k}{v_k})|$$

Korzystając z tabeli 2 mamy F(v) = 0.98, $\Delta F = 0.05$, v = 4.956 m/s, $\Delta v = 0.05$ m/s, $v_k = 5.346$ m/s, $\Delta v_k = 0.05$ m/s i stąd

$$\frac{\Delta n(v)}{n(v)} \times 100\% = 1.60\%$$

4. Wnioski

- 1. Parametry równania (4) a to I_k^2 , v_k i n(v) można kolejno dokładnie wyznaczyć w oparciu o dane powstałe w procesie wzorcowania czujnika.
- Uzyskane dane są jednoznaczne czego nie można powiedzieć o stałych *a, b* i *n* wyznaczanych klasycznie w równaniach (3) i (4).
- 3. Wykazano, że wykładnik n(v) zmienia się z prędkością od wartości 2 [7-9] dla v = 0 do wartości około 0.5 dla większych prędkości.

- 4. Wykorzystując 8-mą kolumnę tabeli $m(I_w)$ można na drodze numerycznej dokonać linearyzacji wskazań anemometru.
- 5. Niepewność wyznaczenia parametrów I_k^2 , v i *n* jest jest dużo mniejsza niż w klasycznej metodzie.

Praca została wykonana w roku 2012 w ramach prac statutowych realizowanych w IMG PAN w Krakowie, finansowanych przez Ministerstwo Nauki i Szkolnictwa Wyższego.

Literatura

- King L.V. On the convection of heat cylinders in a stream of fluid: Determination of the convection constants of a small tungstem (platinium) wires with applications to hot-wire anemometry. Phil. Transs. Roy. Soc., London, A-214, 373-432, 1914.
- [2] Strickert H. Hitzdraht- und Hitzfilmanemometrie. VEB Verlag Technik, Berlin. DDR. S. 263, 1973.
- [3] TSI Model 1129 Automated Air Velocity Calibrator Instruction Manual. 2003.
- [4] Ligeza P. On unique parameters and unified formal form of hot-wire anemometric sensor model. Rev. Sci. Istrum., 76, 2005.
- [5] Ligęza P. Anemometr stałopasmowy. Mat. IX Ogólnopolskiego Sympozjum "Zastosowanie Mechaniki płynów w Inżynierii i Ochronie Środowiska – 2007". Gliwice-Wisła 2007, 153-162.
- [6] DISA Information, Nr 7, pp. 32-35, 1969.
- [7] Kiełbasa J. Measurement of gas flow velocity: anemometer with a vibrating hot wire. Rev. Sci. Insrum., A090785R, 2010
- [8] Papierz K., Kiełbasa J. Methods of velocity measurement by the anemometer with a vibrating hot-wire. Arch. Min. Sci., Vol. 56(2011), No 1, p. 93-118.
- [9] Kiełbasa J. Identification of coefficients describing constant-resistance anemometer. Arch. Min. Sci., Vol. 56(2011), No 3, p. 499-505.

New description of characteristics of constant-temperature thermo-anemometers

Abstract

Paweł Ligęza derived a new equation governing the operation of constant-resistance anemometers, given as:

$$I_{w}^{2}(v) = I_{k}^{2}(1 - \frac{1}{N}) \left[1 + \left(\frac{v}{v_{k}}\right)^{n} \right]$$
(i)

where I(v) is the current supplying the anemometer wire, $N = R_w/R_g$ – wire overheating ratio, R_w – resistance of a hot wire, R_g – wire resistance at the calibration temperature, v – velocity of the flowing medium. The constants I_k^2 , v_k , *n*s are related to the parameters *a*, *b*, *n* in the King equation:

$$I_{w}^{2}R_{w} = (a + b\sqrt{v})(R_{w} - R_{g})$$
(ii)

This study suggests a different approach to finding the parameters I_k^2 , v_k , *n* which are to be computed independently. Rearranging Eq (i) yields a dimensionless equation:

$$\frac{N}{N-1} \frac{I_w^2}{I_k^2} - 1 = \left(\frac{v}{v_k}\right)^n$$
(iii)

and the relevant parameters can be determined accordingly.

It is demonstrated that parameters I_k^2 , v_k are dependent on the hot wire diameter and that the exponent n = n(v) for v in the range 0-5 m/s is a monotonically decreasing function of flow velocity and is associated with the overheating ratio N and the temperature of the flowing gas.

Keywords: thermal anemometer, constant-resistance anemometer, King law