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Abstract

The paper presents a general space-time variant of the geometric-integral theory of infl uences of Professor 
Stanisław Knothe. The theory describes the deformations of rock mass and surface area caused by underground 
mining. Then, calculation algorithms which allow to apply the theory in computer programs were presented. The 
fi rst of the algorithms worked out in the 1970s by B. Drzęźla [10] assumes that the calculations are carried out in the 
polar coordinate system. It is characterized by extraordinary numerical effectiveness and it allows to approximate 
the mining process with any polygon. But the prediction results describe only the fi nal deformation states, which is 
a kind of limitation. The second described algorithm, worked out by J. Białek [2, 3], uses the relations in a rectangular 
coordinate system. It allows to include in calculations the space-time evolution of the multi-panel and multi-bed 
underground mining exploitation. The programs also allow for the description of infl uence delay with respect to 
the completed mining exploitation, in line with the differential equation proposed by S. Knothe. The results of the 
prediction can involve the increment of deformations in any preset time interval, or extreme deformations in that 
time interval. Finally, the main reasons are presented, explaining why the application of S. Knothe theory has been 
popular in Poland and worldwide for 65 years. 

Keywords: subsidence, strata mechanics, geometric-integral theory, numerical calculation methods of mining ground 
deformations

1. Geometric-integral theory of influences of Professor Stanisław Knothe 
– calculation of steady-state deformations – 65th anniversary of its 
formulation

One of the negative effects of underground mining involves the generation of continuous deformations 
of mining ground. Such deformations occur on large areas of the Upper Silesia Coal Basin, bringing about 
damage to numerous building structures. By forecasting such deformations, we can predict the negative 
impact of mining exploitation and make corrections in mining exploitation projects to reduce such negative 
impacts on building structures. 

In Poland the predictions of continuous deformations of mining areas are carried out principally on 
the basis of the formulas of geometric integration theories of infl uences. The main idea of these theories 
involves the acceptance of the assumption that there exist so called function of infl uences f (L, p1,..., pn), 
where L stands for a horizontal distance of the investigated point P on the mining area (in rock mass) from 
the element dS of the selected area S, and the acceptance of the superposition (summing up) principle of 
infl uences. The integration in these theories is carried out over the area being a projection of the mined-out 
panel on the horizontal plane. 

 S
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where: 
 w(P,…) – subsidence of the ground at point P,
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 ag – maximum subsidence observed in a completed subsidence trough, when the dimensions of 
exploitation panel are appropriately big as compared to the exploitation depth,

 p1,..., pn – parameters of the theory of infl uences dependant on the properties of rock mass, exploitation 
depth, bed slope etc. 

Fig. 1. Explanation of the symbols applied in equation 1

Exceptionally popular was the geometric integration theory of Professor Stanisław Knothe [13] pub-
lished in the Archives of Mining and Steel Industry v.I, jour. 1, 1953, which after being complemented by 
Professor Witold Budryk [9] with the proposition to apply the hypothesis of S.G. Awierszyn for the descrip-
tion of horizontal movements [1], was also referred to as the theory of W. Budryk – S. Knothe. This theory 
has just celebrated its 65th birthday. 

In the work [13] S. Knothe suggested the calculation of subsidence with the application of the infl u-
ence function (1.2), which makes use of the Gauss function:
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where: r – parameter of S. Knothe theory referred to as radius of infl uence dispersion. 

If we accept that the distance L from the calculated point P(x,y) to the element of the surface dS of the 
coordinates ξ, η can be formulated by the relation L2 = (x – ξ )2 + (y – η)2, and assuming that the deposition 
depth of seam h, thickness of the mined seam g and the subsidence coeffi cient a are variable, and the rock 
mass layers are sloped, which brings about the deviation of infl uences, then the general equation on the 
subsidence w of the point P described in the rectangular coordinate system has the following form:
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where:
 S(t) – area of the mined-out seam whose dimensions and shape are generally the function of time t,
 ξ, η – coordinates of the mining area element dS.

The length r(ξ,η) of the infl uence dissipation parameter also referred to as the radius of main infl uence 
range is calculated from the relation:

 tg/,, hrr   (1.4)

where:
 h(ξ,η) – depth of the mined seam or dS element of this seam,
 tgβ – the parameter of S. Knothe theory (tangent radius of main infl uence range β),
 px(ξ, η), py(ξ, η) – components of the infl uence deviation vector p along the axes x, y. 
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The length of the deviation vector p is calculated from the relation (1.5):

 khp k tg,   (1.5)

where:
 hk(ξ, η) – depth of the seam element dS in the sloped rock mass (Carboniferous), 
 α – angle of dip of the seam,
 k – is a so called infl uence deviation coeffi cient which commonly assumes the value of k = 0.7. 

Therefore, in order to apply the equation (1.3), we must know the geometry of exploitation (S,g), 
the location of the calculation point P(x,y), value of the theory parameter tgβ and the value of subsidence 
parameter a and k. 

Knowing the horizontal distribution of subsidence w(x, y) defi ned by the equation (1.3), we can cal-
culate slope components T of the subsidence trough profi le:

 y
wT

x
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W. Budryk [9] proposed the calculation of horizontal components ux, uy of the dislocation vector bas-
ing on the Awierszyn hypothesis [1], which reads that the horizontal dislocation at point P is proportional 
to a certain constant B and to slope T. Hence we have:

 ux = –BTx, uy = –BTy (1.7)

The equations (1.3) to (1.7) make up an unusually brief and at the same time general theory of rock 
mass movement which offers the description of the components of dislocation vector of rock mass move-
ment effected by mining works. 

For relatively small curvatures and slopes characteristic for subsidence troughs, the component values 
of vertical profi le curvature of the subsidence trough calculated along the directions of axes x,y are calculated 
from simplifi ed equations:
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When we know the horizontal distributions of vectors ux and uy, based on Cauchy equations we cal-
culate the horizontal components of strain tensor:
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When we have horizontal components of strain tensor and the tensor of curvatures, we can calculate 
two horizontal components of main strains ε1 ε2 and the components of main curvatures K1, K2 of the sub-
sidence trough profi le.

It can be observed from the presented set of equations that in order to calculate the values of subsid-
ence w, slope T and curvature K of the vertical profi le of subsidence trough, we must know the values of 
parameters a, tgβ and k, and in order to determine horizontal dislocations U and horizontal strains ε, we must 
also know the values of parameter B. 

For the equation (1.3) and for its derivatives, we must follow the principle of infl uence superposition 
resulting from the properties of defi nite integrals. If we consider the subsidence w effected by the exploita-
tion of two longwalls S1 and S2, then, in line with the above principle we obtain the relation:

 2121 SwSwSSw   (1.10)

Numerical applications of geometric-integral theory of underground mining effect...
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It means that the subsidence w(S) calculated for the exploitation over the whole exploitation area 
S = S1 + S2 are equal to the sum of subsidence calculated separately for the plots S1 and S2. 

The presented set of equations complemented with appropriate transformation equations is suffi cient 
to produce numerical algorithms and computer programs calculating an arbitrary set of deformation indexes 
which characterize the infl uence of underground mining on rock mass and mining ground surface. 

2. Numerical applications of S. Knothe theory

Apart from the simplest cases of exploitation which can be approximated with elementary shapes like 
half plane, rectangle, circle, ring, ring segment, the application of equation (1.3) or its derivatives necessitates 
the use of numerical methods and computer technology. 

The works on computer software for the simulation of mining area deformation and the deformation 
or stresses taking place inside rock mass were initiated in 1970s by Bernard Drzęźla, who can be regarded 
as a pioneer in this area. At that time Bernard Drzęźla elaborated algorithms allowing for spatial character 
of deformation process and complex shape of abandoned workings, adapting to the domain of ‘mining dam-
age’ a reach arsenal of means and notions from the fi eld of theoretical mechanics and differential geometry. 
The author provided programs for most commonly applied in Poland geometric integration theories of 
W. Budryk – S. Knothe and T. Kochmański, as well as his own solutions. The achievements of B. Drzęźla 
have contributed to a qualitative change involving the prediction process of mining area deformations [10, 
11, 17], and the calculation algorithms published by him have been used as a basis for the elaboration of 
numerous programs elaborated by other authors. 

2.1. Basic calculation scheme proposed by B. Drzęźla – deformations of 
a steady state trough – integration in a polar coordinate system

In the handbook [17] B. Drzęźla published the description of computer programs elaborated by him 
for the deformation of mining ground together with a set of equations and algorithms applied in those pro-
grams. The most popular of those programs were made available as a reference source. The programs have 
been subjected to numerous transformations and developments made by other users. 

B. Drzęźla assumed that the mined seam had the shape of horizontal seam of constant thickness. Then 
the author applied the equations of S. Knothe theory described in a polar coordinate system. 

Fig. 2.1. Sector shaped exploitation

In the case of exploitation having the shape of a circular sector of the radius R and central angle Δq 
expressed in radians, the subsidence at point P is expressed with an unusually simple analytical equation (2.1):
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The simplicity of this equation is one of basic advantages of S. Knothe theory. 
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B. Drzęźla derived (not so simple as the equation 2.1) equations allowing to calculate component 
slopes and curvatures for a circular sector. Using those equations, he proposed calculating the infl uence of 
triangle shaped exploitation of the apexes P – (xk, yk) – (xk +1,yk +1) by approximating the area of that triangle 
with circular sectors presented in Fig. 2.2. 

Fig. 2.2. Approximation of the triangle of the apexes P – (xk, yk) – (xk +1,yk +1) with circular sectors

Fig. 2.3. Denotation for the calculation scheme assumed by B. Drzęźla [17]

Making use of this approximation for the description of polygon shaped exploitation of the apexes 
1 ≤ k ≤ m (Fig. 2.3), the subsidence at point P is calculated from the equation:
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where:
 Δq = (qk+1 – qk) /j – central angle of circular sector,
 l – a number of circular sectors approximating the triangle’s area,
 qj = qk + j · Δq – Δq/2 – angle between the axis x and the bisector of the j-th circular sector,
 Rk(qj) – the length of the radius of circular sector changing along the side described by 

nodes (xk,yk)÷(xk+1,yk +1).

The most important feature of the algorithm worked out by B. Drzęźla is its unusual numerical ef-
fectiveness. Owing to this effectiveness, at the time when the computer memory and computers speed were 
thousands times smaller, it was possible to enter data on completed mining of a whole coal mine (a few 
hundred longwalls) and to calculate the selected deformation indexes in the form of contour maps of the 
selected deformation indexes. 

Numerical applications of geometric-integral theory of underground mining effect...
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Another advantage of the calculation scheme presented in Fig. 2.3 is the possibility to allow for the 
exploitation of practically any shapes, which facilitates the numerical description of old completed mining 
which very frequently has complicated shapes. 

Using the programs elaborated by B. Drzęźla, we can obtain deformation predictions for the fi nal 
deformation states of mining ground after the completion of exploitation. 

The most important programs in which B. Drzęźla implemented the theory of S. Knothe involve the 
programs allowing to obtain a tabular set of deformations for arbitrarily located calculation points (EDG3), 
programs which produce contour maps of the selected deformation indexes (EDG13) and programs which 
enabled a so called inverse analysis, i.e. the determination of theory parameters based on the geometry of 
completed mining and the results of geodesic surveys (EDG4). 

Basing on the main algorithm of B. Drzęźla, in the years 1980-85, the author of the present paper 
elaborated the programs referred to as ENK3, ENK4 (Exploitation Sloped Final – the name had to have 4 
characters) which in the calculations allowed for bed sloping and deviation of infl uences. 

2.2. Author’s programs – calculation of influences, allowing for the space-time 
development of mining exploitation

A very important practical issue in the fi eld of deformation prediction of mining ground involves the 
description of infl uences with the time factor taken into consideration. The knowledge of this issue is neces-
sary due to the following reasons:

– geodetic observations realized in successive measurement cycles provide the picture of the trough 
in different phases of its development, and therefore, in order to be able to compare the observations 
with the results of prediction calculations, we must be able to describe the subsidence at any stage of 
its development,

– the harmfulness of the infl uences on building structures is assessed basing on the calculated (less 
frequently measured) extreme in time horizontal deformations or/and curvatures of vertical profi le, 
which necessitates the analysis of all development stages of subsidence troughs in time. 

The problem of numerical description of mining development in time and resulting from that inter-
mediate deformation states, basing on the differential equation of S. Knothe, was investigated in the works 
of J. Białek [2-4]. In the years 1978-80, the author elaborated computer programs of the symbols ED22, 
ED62, ED64, ED65, applicable on the computer Odra 1305, which in the prediction process allowed for 
both static and dynamic values of deformation. The author introduced the term of extreme deformations in 
the accepted time interval. 

In effect of further works carried out after 1986, J. Białek elaborated a package of programs for the 
prediction of mining ground deformation with time factor taken into consideration, which was applicable 
on IBM-PC computers, and was known under the symbolic name of EDN-OPN. 

The said programs [7, 8] have been systematically updated and developed both in terms of their func-
tionality range, easier operation and the applied theoretical equations, calculation algorithms, applicability 
in successive versions of operation systems DOS-Windows and ability to work with AutoCAD [16]. Below 
we present some characteristic elements of algorithms resulting from the solutions of S. Knothe applied in 
these programs. 

2.2.1. Quasi-static deformations (potentially possible) – integration in a rectangular 
coordinate system

When we ignore the infl uence of the insignifi cant delay involving the display of mining infl uence 
on the surface of mining ground, the development of infl uences in time can be treated as the effect of the 
increase of exploitation fi eld in time S(t) (Fig. 1.1). In contrast to the infl uences, which allow for the delay 
in time, the calculated in this way immediate (fi nal) infl uences are further marked with an additional letter k. 

In the general case (including also nonlinear theories of infl uences) the increment of subsidence in 
time Δt can be calculated as the difference of subsidence: 

 tS
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Jan Białek



75

For the linear theory of S. Knothe, where the increment of subsidence Δwk in the time interval Δt 
does not depend on the infl uences which occurred up to the moment t, it is suffi cient to integrate over the 
fi eld ΔS = S(t + Δt) – S(t):
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In the system of computer programs worked out by the author, the development of exploitation in 
time was allowed for, assuming that the panel (longwall) being exploited is treated as an arbitrary polygon 
defi ned by coordinates x, y (and possibly “z”) of the polygon’s apexes. 

The development of exploitation in time is described in the following way (Fig. 2.4):
– it is assumed that the exploitation starts with a longwall cross-cut described with the side l÷m (the 
fi rst and the last apex of the polygon), and also that the exploitation front is parallel to this side;

– we describe the advance of exploitation in time, giving the date of working startup Tstart and one or 
more pairs of numbers defi ning the longwall’s advance Lj and the date when the advancement was 
reached Tj is. 

Tstart – date of longwall startup
Lj,TLj – pairs of numbers defi ning the longwall’s face advancement length Lj and the date Tj when the length will be reached

Fig. 2.4. Description principles of the in-time changing geometry of the single longwall

In effect of the applied description of exploitation in time, it is possible to obtain the predictions of 
deformation indexes calculated for arbitrarily defi ned time intervals.

Assuming a coordinate system x',y' whose centre is located at the calculation point P(x,y), rotated in 
the way ensuring that the axis x' is parallel to the side 1÷m describing the longwall cross-cut, and dividing 
the plot into narrow strips of the width proportional to the longwall advance obtained in the time interval 
Δt, we are approximating the plot polygon into narrow rectangles which bring about the rise of deformation 
in this time interval. 

When we assume that the bed is horizontal, the increase of subsidence of the point P located in the 
centre of the coordinates x',y' can be expressed as follows:
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where:
 XL, Xp – coordinates x of the left and right side of the calculation rectangle, 
 YD,YG – coordinates y of the bottom and top side of the calculation rectangle,
 i – number of time interval in the accepted time system t.

We can see that the calculation of the increment of subsidence effected by the exploitation of the 
rectangular plot is narrowed down to the calculation of the product of two single integrals, which is several 
dozen times faster than the calculation of a respective surface integral. 

Numerical applications of geometric-integral theory of underground mining effect...
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Because of numerical applications, it was one of the most important advantages of S. Knothe theory. 
It was the application of Gauss function which, in the case of rectangle shape type exploitation, enabled to 
transform the equation (1.3) (double integral) into the product of single integrals. I personally do not know 
any other function which would be capable of doing it and which would at the same time have the properties 
to be applied as the function of infl uences. 

We can add here that equally easy equations can be used to calculate the increase of the remaining 
deformation indexes ΔT'xk, ΔT'yk, ΔK'xk, ΔK'yk, ΔU'xk, ΔU'yk, Δε'xk, Δε'yk, Δε'xyk which must be then transformed to 
the original, common for all panels system x, y, additionally allowing for the necessity to calculate them in 
the directions rotated by the value of calculation direction preset in the task. 

The summed up and appropriately memorized calculated increment values of deformation in succes-
sive time intervals Δt allow to follow the changes of deformation in time, and also to detect the values of 
deformations extreme in time. These are potentially possible deformations (quasi-static), calculated without 
time delay taken into consideration. 

2.2.2. Description of non-steady-state influences with the use of S. Knothe 
differential equation

Of primary importance for the description of non-steady-state subsidence troughs, where we must 
allow for the development of exploitation in time and the delay of infl uences, is the differential equation 
(2.6) proposed by S. Knothe [14]. According to this equation, the speed of subsidences dw/dt at time t is 
proportional to the value of parameter c and to the difference between the subsidence w(t,…) taking place at 
time t and the subsidence which can be defi ned as potentially possible subsidence at time t, i.e. the subsid-
ence which would occur if the subsidence process was running without delay in time. 
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where: c[1/time] – index of subsidence speed, also called time index.

Fig. 2.5. Longwall plot after the transformation into the system x',y' divided into narrow rectangles 
of the height Δy' = YG – YD = v ·Δt proportional to the speed of longwall front advance v
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One of the solutions of differential equation (2.6) is the formula (2.7):
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Time τ is the exploitation time of surface element dS, which would potentially (if the subsidence was 
without delay in time) bring about the increment of subsidence dwk(τ). The discretization of this equation 
consists in replacing the differentials dwk(τ,..) with a sequence of fi nite increments Δwki calculated for time 
intervals from t = Δt to t = n ·Δt. The calculation method of these increments was described in the previous 
chapter. Hence, we obtain a series (2.8):
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In order to fi nd deformations extreme in time (it does not involve subsidence which change in a mo-
notonic way), we must know the values of deformations for successive times ti = i ·Δt , where 1 ≤ i ≤ n, 
so we must repeat the calculations n times with the equation (2.8). A fast calculation method of successive 
expressions of the series 2.8) is described in works [2],[4].

2.2.3. Functionality range of programs for deformation calculations 

The potential of the author’s package of computer programs for the realization of prediction calcula-
tions with the application of the presented algorithms is most effectively illustrated by the presented window 
of control program in the fi gure 2.6, having the symbolic name EDNOPN. 

Fig. 2.6. Window of the EDNOPN control application that serves as computational environment for applications that perform the 
actual prediction calculations

Numerical applications of geometric-integral theory of underground mining effect...
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Fig. 2.8. Window of EDNPLOT application invoked automatically from EDBJ2draw application

Fig. 2.7. Window of EDBJ2draw application – options selection of the designed drawing of contour lines of deformations along 
with the drawing’s background

Jan Białek
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The window consists of 3 panels. The left panel is the catalogue panel. In the middle panel, we can 
see the fi les being the content of this catalogue. The keys on the right panel invoke the successive programs 
of the package. Three thematic groups have been singled out in this panel:

1. A group of programs for checking and changing the data about mining exploitation. 
2. A group of programs realizing prediction calculations.
3. A group of auxiliary programs, including the programs realizing a so called inverse analysis, i.e. programs 

determining the parameters of the theory of infl uences based on known results of geodesic surveys. 

The most important programs calculating the deformations involve such programs as EDBJ1 – calcu-
lation of deformations in a tabular form, a series of programs EDBJ2 (Fig, 2.7 and Fig. 2.8) which generate 
fi nal contour maps of the selected deformation indexes together with contour lines of mining exploitation and 
with the pictures of essential elements of mining ground, and the program OPN1w generating the survey-
geological opinion in the format required by mining offi ces. 

3. Advantages of S. Knothe theory

The basic advantage of this theory is manifested by its unusual simplicity characteristic for all geometric 
integration theories. In the case of S. Knothe theory, there is also a very accurate selection of the infl uence 
function in the form of Gauss function. It was only the Gauss function that could be transformed from the 
function of two variables into the product of two homogeneous functions of one variable (3.1). 

 
22222 YXYXL eeee   (3.1)

Owing to the dependence (3.1), the spatial solution (1.3) can be narrowed down to the product of fl at 
solutions (2.5). 

As unusually accurate can be viewed the parametrization method of the infl uence function proposed 
by S. Knothe (1.2). The parameter r from this function, referred to as radius if infl uence dissipation, is at 
the same time the radius of main infl uence range, where according to the theory, the subsidence are smaller 
than 0.6% of the maximum subsidence. 

The length of the radius r is connected with a very important dependence which allows us to determine 
its length basing on the measured maximum slope Tmax and the subsidence wmax of the complete subsidence 
trough:

 max
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In case of Upper Silesian Coal Basin (USCB) we must add that the most commonly accepted length 
of the radius r is equal to the half of the depth of the analyzed seam. The simplicity and obviousness of these 
dependences contributed to the popularity of S. Knothe theory. 

The peak of numerical effectiveness is expressed by the equation (2.1) describing the subsidence effected 
by a circular sector-shaped exploitation. It is a closed analytical formula consisting of one elementary function 
– it’s just that simple. The application of this equation leads to a very fast algorithm in numerical realization 
(2.2), owing to which we can calculate the subsidence effected by the exploitation of bed of any shape. 

Another page in the development history of deformation description in time involves the differential 
equation (2.6) proposed by S. Knothe and his differential expressed by the equation (2.7). I think there is 
no equally simple and at the same time so general and universal description of a phenomenon. We must add 
here that the equation (2.7) has been subjected to many modifi cations. For the calculation of dwk(τ), we can 
apply different infl uence theories, not necessarily the equations of S. Knothe, and in the form of time func-
tion F(t – τ) = 1 – exp(–c(t – τ)) there might be for example its linear combinations [12]. 

Finally, we must add that the equation (1.3) can be treated as one of possible solutions of the stochastic 
medium theory of J. Litwiniszyn [15], which means that this equation has deeper theoretical reasoning, and 
furthermore, it describes well the subsidence of loose medium. 

Numerical applications of geometric-integral theory of underground mining effect...
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4. Summary

During the 65 years of existence the theory of Professor Stanisław Knothe has proved its usefulness 
as a tool facilitating the assessment of the infl uences of completed and planned mining operations. It has 
inspired various research studies and scientifi c publications in the fi eld of mining area deformation, and 
a great number of researchers contributed to its development and improvement. 

For me the theory of S. Knothe is a set of unusually effective equations which I have applied in the 
computer programs worked out by me. Initially I created the programs as a set of tools which would enable 
the realization of complex prediction problems, and in time they assumed the form of commonly available 
applications.
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